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Abstract

It is incorrect to say "the test is reliable" because reliability is a function not

only of the test itself, but of many factors. The present paper explains how different

factors affect classical reliability estimates such as test-retest, inter-rater, internal

consistency and equivalent forms coeffidents. Furthermore, The limits of classical

test theory are demonstrated, and it is recommended that researchers, teachers and

psychologists instead utilize generalizability-theory estimates of reliability. Heuristic

examples and detailed explanations make this discussion accessible even to those

who are uninitiated in either classical test theory or generalizability theory.
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The reliability of tes:: scores concern teachers, psychologists and researchers

who want to know that the scores on the tests which they administer are consistent

and generalizable. Unfortunately, many training programs in the disciplines of

education and psychology still emphasize classical methods of deriving reliability

coefficients (such as test-retest reliability, internal consistency reliability). In

addition, typical ways of teaching about selecting and using standardized tests may

unwittingly teach students that instruments or tests can possess a quality called

"reliability."

The present paper demonstrates the extent to which classical reliability

estimates derived using the true score model can yield accurate estimates of

measurement error, as well as explains the limits of these classical reliability

estimates. Furthermore, the paper illustrates how reliability is a quality of scores on

tests, and not a quality of tests or instruments. Many factors affect the magnitude of

reliability estimates. These contributing factors include qualities of test items to be

sure, but they also include characteristics of examinees--which certainly are not the

same from testing to testing. For these reasons researchers, psychologists and

teachers are advised to neither write nor say that "the test is reliable (or not

reliable)." Rather, what should be said or written is, "the scores from this testing are

reliable (or not reliable)."

Definitions of Reliability According to Classical Test Theory

To explain how tests cannot be reliable, only scores can be reliable, it is helpful

to give a brief review of the concept of reliability. Reliability expresses the

relationship between observed scores and true scores. A concrete example using the

spelling test scores of a second grade class clarifies these constructs. "Tule score"

refers to each classmember's true ability in the domain of 2nd grade spelling.

"Observed score" refers to each classmember's actual score on the spelling test. S(),
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reliability concerns the relationship between what the children actually know about

spelling (true score) and what they ma de on their spelling test (observed score). This

relationship between true score and observed score can be conceptually explained as

a mathematical model, a statistic, and an illustration, all of which are demonstrated

below.

The relationship between true score and observed score as expressed in a

mathematical model was explained by Charles Spearman (1907, 1913, cited in

Crocker & Algina, 1986) in what has become known as the true score model or

classical test theory. According to Crocker and Algina (1986), "the essence of

Spearman's model was that any observed test score could be envisioned as the

composite of two hypothetical components--a true score and a random error

component" ( p. 107). Thus, the equation is Observed score=True score + Random

error. In other words, observed scores are composed of true scores (which, by

definition are reliable) and an error component that is not reliable. From the true

score model one can construct another equation for reliability as expressed in a ratio

of true score variance to observed score variance. So, reliability is "the proportion of

observed score variance that may be attributed to variation in the examinees' true

scores" (Crocker & Algina, 1986, p. 116).

It is important to note that the error term in this model can have a positive

effect or a negative effect on observed scores. For example, if a student does not

know the answer to a question, but guesses correctly, his or her observed score will

be higher than his or her true score. In this case the measurement error that was

introduced by the guess has a positive effect on the observed score. Alternatively,

another student might know the correct answer and mismark the answer, so that

she or he answers incorrectly. In this case, the true score exceeds the observed score

and the error that was introduced by mismarking had a negative effect on the

student's observed score.
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As noted above, reliability can also be expressed as a statistic such as

coefficient alpha or as the pearson product-moment correlation, r. Alpha will be

explained later, so this demonstration focuses on r. Expressed as a correlation,

reliability is the correlation between the true scores (actual ability in the domain of

2nd grade spelling) and observed test scores (the class's scores on the spelling test).

[The correlation between true scores and observed scores is called the reliability

index. The reliability coefficient is the reliability index squared (Crocker & Algina,

1986, p. 115-116).] This relationship between true scores and observed scores can also

be illustrated as the graph found in Figure 1, or the diagram found in Figure 2.

The Impact of Examinees on Test Score Reliability

Now that the concept of reliability has been reviewed and illustrated as the

correlation statistic, r, one can easily demonstrate why it is incorrect to say that "the

test is reliable" and more accurate to say that "the scores are reliable." Hinkle,

Wiersma and Jurs (1994) describe how r is affected by homogeneity of the group.

When a group is very homogeneous all of the members tend to score similarly to

one another. When this happens the range of scores is very small and thus the

standard deviation of the scores is very small. After reflecting on the formula for the

correlation coefficient, r=Covariance of X & Y Mstandard deviation of X)(Standard

deviation of Y)], one notices that,

If a group is sufficiently homogeneous on either or both variables, the

variance (and hence the standard deviation) tends toward zero. . . . When this

happens, we are dividing by zero, and the formula becomes meaningless. In

essence, the variable has been reduced to a constant. As a group under study

becomes increasingly homogeneous, the correlation coefficient decreases.

(Hinkle, Wiersma & Jurs, 1994, pp. 115-116)

Since reliability is a correlation coefficient, it is affected by the homogeneity of the

group to whom the test is given. As the group being studied becomes increasingly
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homogeneous, the reliability coefficient decreases. Thus reliability is affected not

only by the properties of the items on the test, but also by the persons taking the test.

An illustration using the spelling test example makes this more clear. Figure

1 displays the relationship between the entire 2nd grades true spelling scores and

their observed spelling test scor4s'. The reliability of the spelling scores is calculated

in Table 1 to be .9977, which is considered to be rather reliable. A second reliability

coefficient has also been calculated. This second coefficient is the reliability

coefficient for the scores of the top five students in the 2nd grar t. The top five

students are likely to do homogeneously well on the spelling test. The range of

their scores is smaller than the range of scores of the entire second grade. Notice

that the reliability coefficient for this group is lower (reliability = .7456) than the

coefficient for the entire grade. This example illustutes one reason why it is

incorrect to say "the test is reliable" or to say "the test is not reliable". As Gronlund

and Linn (1990) noted,

Reliability refers to the results obtained with an evaluation instrument and

not to the instrument itself.... Thus it is more appropriate to speak of the

reliability of the "test scores" or of the " measurement " than of the "test " or

the " instrument". (p. 78, emphasis in original)

A test, in and of itself, cannot be reliable because reliability is a function not only of

the items on a test, but also a function of who takes the test. As Rowley (1976) states,

"It needs to be established that an instrument itself is neither reliable nor unreliable.

. . .A single instrument can produce scores which are reliable and other scores which

are unreliable". (p. 53)

Implications for Psychometrists. Therapists and Researchers

Education and psychology training programs teach students to read test

manuals to examine reliability and validity coefficients. When evaluating norm

statistics (such as reliability) reported in test manuals, psychometrists must be very
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careful that the intended examinee is similar to the normed group. As the example

in Figure 1 illustrates, however, even when one cautiously selects a test that has

yielded reliable scores for similar examinees in the past, it is incorrect to assume the

test will yield reliable scores for all future uses of the test. A psychometrist is also

cautioned to look at the homogeneity or heterogeneity of the norm group. For

example, as the spelling test example has shown, if the norm group is incredibly

heterogeneous compared to the group for whom the test is designed, one might

expect that the reliabilities calculated for the intended groups will be lower than the

ones reported in the manual. For this reason, and other reasons, it is important to

calculate reliability for every group to whom the test is given.

Because reliability is a function of at least both the test and the test-takers,

researchers as well as psychometrists should calculate reliability statistics on the

scores of every goup of persons that they measure. Researchers calculate reliability

statistics on their own data for two reasons. The first reason to calculate reliability

statistics on one's own data has been discussed above: to discover the extent to

which measurement error has affected one's data. The second reason for calculating

reliability statistics on one's own data is to determine the extent to which

measurement error is limiting the effect sizes in the study of interest. Reinhardt

(1991) cautioned researchers on this point, noting that "Prospectively, researchers

must select measures that will allow detection of effects at the level desired;

retrospectively, researchers must take reliability into account when interpreting

findings" (p. 1).

An example using the effect size for a correlation coefficient explains this

principle clearly. As Thompson (1991) explained, the correlation coefficient is the

basis for all parametric stat stics; "all classical analytic methods are correlational"

(emphasis in original, p. 87). Therefore, the principle involving reliability

coefficients and effect sizes has implications for all effect sizes in all common
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statistical procedures such as ANOVA, multiple regression, MANOVA, factor

analysis, discriminant function analysis, and canonical correlation analysis. As

Locke, Spirduso and Silverman (1987) noted, "the correlation between scores from

two tests cannot exceed the square root of the product for reliability in each test" (p.

28). Written in equation form, the relationship between reliability and correlation

looks like this:

r "< [(reliability of X)(reliability of Y)].5

This formula for the correlation between scores on X and scores on Y can be

algebraically changed by squaring both sides of the equation to create an r2 type of

effect size. The new equation explains how reliability is related to effect sizes.

r2 xy < [(reliability of X)(reliability of Y)]

The effect size can be no greater than the square root of the product of the reliability

coefficients for the two measures that are being correlated.

An example illustrates how reliability influences effect size. One researcher

is interested in the effects of self-esteem on achievement test scores. 3he uses the

Self-Esteem Scale of the Behavioral Assessment System for Children (BASC)

(Reynolds & Kamphaus, 1992) to measure the self-esteem of third graders at a local

elementary school. To measure achievement, she uses the achievement scores

from the standardizes testing of the school district. She obtains two reliability

coefficients, one for the self-esteem scores (rxx. .60) and one for the achievement

scores (ryy= .90). Using the formula above, the researcher learns that the maximum

effect size that she can obtain when she correlates self-esteem scores with

achievement test scores will be .54 (effect size < [(.6)(.9)]=.54). The researcher in this

hypothetical example obtained an effect size of .52. Her uninformed colleague told

her that the effect size was only "moderate". She replied to the colleague,

'Moderate? How can you say that it is 'moderate' when the maximum effect size I

could have found was .54? This is not a 'moderate' effect size. In the context of
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what could be (maximum =.54), .52 is a rather strong effect size." Thompson (1994)

warned the would-be researcher to weigh the effects of reliability on effect sizes

when planning and evaluating research.

The failure to consider score reliability in substantive research may exact a toll

on the interpretations within research studies. For example, we may conduct

studies that could not possibly yield noteworthy effect sizes given that score

reliability inherently attenuates effect sizes. Or we may not accurately

interpret the effect sizes in our studies if we do not consider the reliability of

the scores we are actually analyzing. (p. 840)

Methods of Estimating Measurement Error Using the True Score Model

Returning to the Classical True score model (Observed Score= True Score +

Random Measurement Error), what is of interest to the researcher, the psychologist

or the teacher is the examinee's true score. Crocker and Algina (1986) defined true

score "as the average of the observed scores obtained over an infinite number of

repeated testings with the same test" (p. 109). Unfortunately it is impossible (and

impractical) to calculate true scores in this manner. True scores cannot be exactly

calculated. They can only be estimated. True scores are estimated using what the

researcher can obtain--observed scores, measurement error estimates (i.e.., reliability

coefficients) and the true score model.

The true score is predicted by estimating the amount of measurement error

that occurred in the administration of a test and then adjusting the observed scores

using that estimation of error. If one knows the measurement error, then one can

estimate the extent to which the measurement error has caused the observed scores

to deviate from the true scores. It follows, then, that the estimation of measurement

error is the key to finding true scores. Crocker and Algina (1986) defined error in the

classical true score model as "an error of measurement. . .the discrepancy between

an examinee's observed test score and his or her true score" (p. 110). [Note that this
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type of error is measurement error as opposed to sampling error or model error.

Sampling error is the difference between the statistic one obtained by measuring a

sample and the statistic that one would have obtained had one sampled the entire

population. Model error is the variance in the observed dependent variable score

that is not explained by the independent variables in the model. Using the earlier

example, model error would be the variance in the achievement test scores that

cannot be explained by the self-esteem scores.]

In classical test theory, there are four sources of measurement error that are

often estimated: (a) inconsistencies in occasions, (b) inconsistencies in forms, (c)

inconsistencies between raters and (d) inconsistencies in sampling the content

domain. What follows is a discussion for each source of error explaining how each

of these inconsistencies is a source of measurement error and how to compute the

reliability coefficient that corresponds to that source of error. Before moving directly

to those explanations, however, it is important to note Gronlund's warning

regarding reliability and particular sources of error.

An estimate of reliability always refers to a particular type of consistency [e.g.,

consistency across occasions or across forms or across raters or across items

sampled]. .. .It is possible for test scores to be consistent in one of these

respects and not in another. The appropriate type of consistency in a

particular case is dictated by the use to be made of the results. . . . The

reliability coefficient resulting from each method [of calculating reliability]

must be interpreted in terms of the type of consistency being investigated. (pp.

106-108)

With this warning having been heeded, an explanation of different sources

of error and how to calculate reliability coefficients for each of those sources is

considered next. A researcher may be concerned with how stable his or her observed

test scores will be over time. In other words, if the test were administered to the
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same group of people on a future occasion, how different will the test scores

obtained on the second occasion be from the scores observed on the first occasion?

The difference between the scores on these two occasions is a source of

measurement errormeasurement error due to occasions. Once this source of error

has been measured (by testing the same group of persons with the same test on two

different occasions) one can compute a reliability coefficient called the "stability

coefficient". The stability coefficient is calculated by computing the pearson product

moment correlation between the scores on the two different occasions (Crocker &

Algina, 1986).

A second source of measurement error comes from inconsistencies in test

forms. A teacher who would like to deter cheating on an exam may give two

different forms of the same test. To understand how giving two different forms of

the test might have introduced measurement error into the observed scores, the

teacher may compute a reliability coefficient called the "equivalence coefficient".

The equivalence coefficient is computed by calculating the pearson-product moment

correlation between the scores on the two forms. Note that to compute this

coefficient it is necessary to give both forms to at least a portion of the persons taking

the test. One form is given and then the second form is administered within a short

period of time. Usually the order of the forms is counterbalanc d, so that order of

test form will not affect scores or reliability estimates.

A third source of measurement error arises from inconsistencies between

raters. (This type of error, of course, only occurs when one uses raters and will not

occur during the administration of an objective exam with accurate machine

scoring.) For example, one rater may have a slightly different method of assigning

scores than another rater. To estimate the extent to which this type of measurement

error has differentiated the observed scores from the true scores, one may calculate

the inter-rater per cent agreement, or some similar coefficient.
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A fourth major source of measurement error in classical test theory arises

from inconsistencies in sampling the content domain or from inconsistencies in

items. When a teacher (or psychologist) gives a test, he or she cannot possibly ask all

of the questions in the domain of the content area being tested. Therefore, he or she

must select possible items from the larger content domain. The teacher or

psychologist hopes that he or she selected the correct item, such that scores on the

test he or she created can generalize to the domain of questions that might hal.

been asked (Crocker & Algina, 1986). One may calculate the "internal consistency

reliability coefficient" to estimate the extent to which this type of measurement

error has caused the observed scores to deviate from the true scores. There are

several ways to compute the internal consistency coefficient; all are based on the

correlation between separately scored parts of the test (Crocker & Algina, 1986). "If

examinees' performance is consistent across subsets of items within a test, the

examiner can have some confidence that this performance would generalize to

other possible items in the content domain" (Crocker & Algina, 1986, p. 135). Three

common ways to calculate internal consistency reliability are the split-half

coefficient, KR-20 and Cronbach's (1958) alpha. Split-half coefficients are the

Pearson product-moment correlations between scores on two halves of the same

test. KR-20 and Cronbach's alpha are computed with similar formulas, which are

outlined below. Notice that the formulas are identical with one exception--how

they compute the sum of the item variances. Because KR-20 is used only with

dichotomously scored data, a simp!er formula for item variance can be used.

KR-20 = [k/(k-1)][1-(e(N)/Gx2)1

Cronbach's Alpha =

k = number of items

p = percent of persons answering the item correctly
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q = percent of persons answering the item incorrectly

E3i2 = sum of the item variances

ax2 = test score variance

Problems with True Score Model Estimates of Measurement Error

The reliability coefficient has been previously defined. One definition that

lends itself particularly well to graphic illustration is the one offered by Crocker and

Algina (1986). The reliability coefficient is "the proportion of observed score

variance that may be attributed to variation in the examinees' true scores". (p. 116)

An example has been drawn in Figure 3. The outer rectangle represents the

observed score variance. The shaded area of the observed score variance is the true

score variance (or 90% of the observed score variance). The unshaded portion of the

observed score variance is the measurement error variance (10% of the observed

score variance). Notice how the reliability coefficient (Lo, =.9) defines how much of

the observed score variance is measurement error variance. Recall that in classical

test theory, reliability is defined by the source of error being estimated (occasions,

raters, forms or items).

From this diagram and the calculations that are used to estimate reliability in

classical test theory, it becomes apparent that classical test theory only allows for the

estimation of one type of error at a time--e.g., only inconsistencies across forms, but

not across raters, items or occasions (Webb, Rowley & Shavelson, 1988). It does not

allow for estimations of simultaneously occurring measurement error. This major

flaw in the true score model causes problems in the everyday use of reliability

coefficients that have been derived using classical methods.

For example, a school psychologist is testing a boy to see if the boy will be

given a mental retardation diagnosis. If the boy is given the diagnosis, then he will

carry that diagnosis for many years to come. Therefore, it is very important that the
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test that determines whether or not the boy receives a diagnosis yields scores that

tend to have very Itigh stability coefficients. That is to say, if the test diagnoses him

as mentally retarded today, the test should diagnose him as mentally retarded at

many points in the future, because he will be carrying this label for many years.

Would it not also be important to simultaneously evaluate whether or not the

items on the test enable the test administrator to generalize results on this test to the

greater domair. of mental retardation (i.e., that the test yields scores that tend to

have high internal consistency coefficients)? Certainly, it would be important to

ensure stability and internal consistency for a test with such far reaching

implications. Classical test theory does not permit the researcher, psychornetrist or

teacher to simultaneously evaluate the effects of both of these possible sources of

error on examinees' observed scores. Therefore, in Figure 3 the portion of the

diagram that represents error variance can represent only one source of error at a

time and does not meet the needs of most researchers, teachers or psychologists

(Webb, Rowley & Shavelson, 1988).

There is a second problem with this limited model of measurement error

(i.e., the True score model). The True score model does not account for error

variance that may be caused by interactions between the different components of

measurement error. Consider for example a testing scenario in which two judges

assign ratings to candidates for entry into a graduate program based on 10 criteria.

Table 2 outlines the 10 criteria and the ratings of the two judges on one of the

applicants. Notice that the judges both gave the candidate a total score of 5.

According to classical test theory, the candidate's score is consistent across raters;

thus, the inter-rater reliability coefficient seems to be high. Also notice that the

candidate received a "1" on all of the criteria. Therefore, according to the true score

model, the candidate's scores seem to be consistent across items and thus, internal

consistency reliability is high.
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However, the true score model does not detect the obvious item-by-rater

interaction effect. Such interactions can occur in common measurement situations,

and can create sizeable and additional unique measurement error components.

Thuse, it is a serious flaw that true score theory does not calculate or evaluate

interaction sources of measurement error. This problem would be detected had the

researcher used generalizability theory to derive his or her reliability estimates.

Generalizability theory subsumes classical test theory and the True score model

(Thompson, 1994). Generalizability theory is a topic too large for discussion in this

paper. The interested reader is directed to Shavelson and Webb (1991) for more

information. A note from Jaeger (1991), however, gives a flavor of the thoughts on

generalizability theory in comparison to classical test theory: "Thousands of social

science researchers will no longer be forced to rely on outmoded [classical theory]

reliability estimation procedures when investigating the consistency of their

measurements" (Jaeger, 1991, p. x).

Other Factors Affecting the Magnitude of Reliability Coefficients

Several factors influence the magnitude of reliability coefficients. Among

those elements are homogeneity of the examinees, time limits placed on the test,

the spread or variability of the scores, the length of the test and the difficulty of the

items. The earlier spelling test example illustrated how homogeneity of examinees

can attenuate reliability coefficients. A spreadsheet program created from the

formula for KR-20 demonstrates how time limits, test score variability, test length

and item difficulty affect reliability coefficients.

To understand how time limits affect coefficient alpha, it is important to

recall that the True score model assumes that measurement error is random, not

systematic (Observed Score= True Score [systematic] + Error [random] ). The speed at

which an examinee can complete a test, however, is systematic, not random.

Therefore, speed is an ability that would fall under the systematic part of the True
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score model. Tables 3 and 4 demonstrate the effects of speed on a seven-item,

reading comprehension test taken by 10 persons. (Note. The grid represents persons'

scores (0=incorrect and 1=correct) in the seven items. The final column lists each

individual's total score. Across the bottom of the grid one can find "p" or the

difficulty for each item and "v" the variance of each item. Below the grid one can

find the elements of the KR-20 formula for alpha (k/k-11[1- (the sum of the item

variances/ total test score variance)].) In Table 3, the examinees were given as much

time as they wanted to complete the test. In Table 4, the test was timed and four

members of the classTodd, Nancy, Lu and Tammi--did not do as well as they did

when they had all the time that they needed. (The items that they missed are in

bold.)

One could reasonably argue that the first, untimed test scores illustrate the

abilities of the class on reading comprehension better than do the timed test scores.

Nonetheless, the reliability of the timed test .74) is greater than the reliability of

the untimed test (sx= .20). This occurs because the timed test measures two abilities

reading comprehension and speed--as opposed to the untimed test which only

measures reading comprehension. This measuring of two abilities provides for a

greater spread in the total test scores. (Notice that the range on the timed test is 7-

1=6, while the range on the untimed test is 7-4=3.)

The spread, or variance, in total test scores is the element of the KR-20

equation that most greatly affects the magnitude of coefficient alpha (Reinhardt,

1991). The spreadsheet program used in the timed-test example can also be used to

illustrate how total test score variance affects coefficient alpha. Table 5 illustrates

that when there is very little test score variance, coefficient alpha is at an absolute

low (gx= -21). Note that coefficient alpha can be negative. (This occurs when the sum

of the item variances is greater than the total test scon. variance.) Also note that if

there is no variability in total test scores, then it is impossible to compute coefficient
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alpha. (It is impossible to divide by zero.) Therefore, in Table 5, the test score

variance has been reduced to the lowest possible level without becoming zero.

Table 5 was transformed (changed values are in bold in Table 6) to create

maximum test score variance. The item responses were changed so that half of the

students answered all of the items correctly, while the other half of the students

answered all of the items incorrectly. Arranging the test scores this way creates

maximum deviation from the mean test score. (Recall that the formula for

variance has as its numerator the sum of the squared deviations from the mean.)

While these test scores are probably not test scores desired by any teacher, they are

the test scores that will produce maximum total test score variance, and thus,

maximum coefficient alpha.

The above describes mathematically how test score variance can increase

reliability. Gronhmd ( 1976) offers a conceptual explanation.

Since the larger reliability coefficients result when individuals tend to stay in

the same relative position in a group, from one testing to another, it naturally

follows that anything which reduces the possibility of shifting positions in the

group also contributes to larger reliability coefficients. In this case greater

differences between the scores of individuals reduce the possibility of shifting

positions. (p. 118)

A related concept concerns the effects of length of test on reliability

coefficients. Longer tests, generally speaking, are likely to create more test score

variance and thus increase reliability coefficients. It is possible, however, for one

test to be longer than a second test and still yield scores with the exact same or lower

reliability estimates than the shorter test. "There is one important reservation in

evaluating the influence of test length on the reliability of the scores, . . . [this rule] . .

. assume[s] that the test will be lengthened by adding test items of the same quality as

those already in t:ie test" (Gronlund, 1976, p. 118).

1.
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In other words, if the items added to ti ,.? test are worse than the items already

on the test, the longer test may actually yield lower reliability coefficients than the

shorter test. Tables 7 through 10 demonstrate how adding items to a test may make

reliability better, worse or the same depending upon the quality of the added items.

Table 7 lists the scores of 10 persons on a seven item test ( c= .84). Two items were

added to this test and scores on the new items can be seen in Table 8. Notice that the

two items that are added do not change the rankings of the examinees. Everyone

answered the two added items incorrectly. Notice also that the coefficient alpha

exactly equals the alpha of the test without the added items ( sx= .84).

A third example is given in Table 9. Notice that the added items increased

the spreadoutness of the test scores; the range is now 9 instead of 7. This increase in

total test score variance increased coefficient alpha (2= .89). However, in Table 10

one can see how adding items of lesser quality than the original items can actually

decrease coefficient alpha (a= .69). In this example, the added items were of lesser

quality than the original items because persons who had scored low (Skip and Jan)

on the original test answered the items correctly while persons who scored high

(Alex and Gina) on the original test answered the added items incorrectly.

Furthermore, the added items decreased the variance of the total test scores. (Notice

that the range on the original test was 7, while the range on the new test is 6.)

The item difficulty affects reliability in much the same way as test length

does--by increasing or decreasing total test score variance. If all of the items on a test

are rather difficult for all of the examinees, then the test score variance will be small

and the reliability coefficient will be low. (The range of scores will be restricted, with

everyone scoring near 0% correct.) The same phenomenon occurs if all of the

examinees answer almost all of the items correctly. Reliability will be low because

test score variance is low. (The range of scores will be restricted, with everyone

scoring near 100% correct.) If, however, the test is of a medium difficulty for the
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examinees, the scores will have a greater range, and reliability will be increased.
Gronlund (1976) explains that to maximize reliability one should design a test so
that

the average score is 50 per cent correct and that the scores range from near
zero to near perfect. . . . We can estimate the ideal average difficulty for a
selection-type test by taking the point midway between the expected chance
score and the maximum possible score. Thus for a 100 item true-false test the
ideal average difficulty would be 75 (midway between 50 and 100), and for a
100 item five-choice multiple choice test the ideal average difficulty would be
60 (midway between 20 and 100). (p. 121)

Conclusion

The present paper has demonstrated that several factors influence reliability
coefficients as derived using classical test theory. While the qualities of a test do
contribute to the magnitude of the reliabilities of the scores that the test yields, the
qualities of that test certainly do not control whether or not all scores on test can be
called "reliable." Other factors Including homogeneity of examinees, ability level of
examinees vis-a-vis the test items, score variance, and test time-limits all have the
potential to greatly influence reliability of scores. These potentialities have been
demonstrated in the present paper. Furthermore, the limits of classical test theory

,

reliability estimates have been detailed.

recommendations. First, teachers, psychologists and researchers should teach
and/or understand the limitations of classical test theory reliability estimates.
Second, researchers, psychologists and teachers should never write or say that "the
test is reliable (or not reliable)." Rather, the author recommends that such persons

1

For reasons outlined in the present paper, the author makes two
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be accurate, writing and sayi g, "the scores from this testing are reliable (or not

reliable)." As Thompson has noted,

This is not just an issue of sloppy speaking [or writingithe problem is that

sometimes we uncc nsciously come to think what we say or what we hear, so

that sloppy speaking does sometimes lead to a more pernicious outcome,

sloppy thinidng and sloppy practice. (Thompson, 1992, p. 436)
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Table 1
Reliability Calculated as the Correlation between True Scores and Observed Scores

2nd Graders True Score Observed Score
Jane 57 58
Julio 96 95
Max 63 62
Maria 100 99
Jason 63 63
Leticia 98 100
Margaret 65 64
Anna 98 98
Michael 65 65
David 96 97
Emily 65 66
Sara 96 95
Cathy 68 67
Arno ldo 93 94
Ramiro 67 68
Wayne 93 93
Mitchell 68 69
Matthew 90 91
April 70 71
Amy 88 89
Joan 72 73
Craig 88 87
Linda 75 75
Ruth 85 85
Todcl 76 77
Andrew 82 83
Fred 79 79
Juan 82 82
Virginia 81 80

Sum 2319 2325
r Mean 77.3 77.5

iI Reliability of the Entire Class
rxx.- .9977

i Reliability of the top 5 persons in the Class (bolded names)
rxx. .7456
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Table 2
Example of an Interaction Effect that is not Detected Using Classical Test Theory
Reliability Estimates

Criteria Judge #1's Ratings Judge #2's Ratings
Criterion 1 0 1

Criterion 2 0 1

Criterion 3 0 1

Criterion 4 0 1

Criterion 5 0 1

Criterion 6 1 0

Criterion 7 1 0

Criterion 8 1 0
Criterion 9 1 0

Criterion 10 1 0

Total Score
1

1

1

1

1

1

1

1

1

1

Total Rating = 5 Total Rating = 5 Total Score = 10
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Table 3
Ten Students' scores on a 7-item, nonspeeded test with coefficient alpha calculations

:

Todd :

ii Lu '

Karen
Ayer-V

,..
Oils
Kris
Brad i

A. rl

Items
2 ''',::::::!:::il'4MR,:::i.:::::4:-.':1.:..:',:.5i'.. 6*:::',:.;:.':.:Ii..7 i'' Score.'

1 1 0 1 1 1 0 5
0 1 1 1 1 1 1 6
1 1 1 1 1 1 1 7
1 1 0 / 0 1 0 4
1 1 1 1 1 0 1 6
0 1 1 1 1 1 1 6

1 0 1 0 1 0 1 4
1 0 1 1 1 1 6
1 1 1 1 1 1 7
1 1 1 1 1 1 7

1

1

-I

P 0.8
V 0.16

0.20=a

0.9 0.7 0.9 0.9 0.8 0.8 5.8 M
0.09 0.21 0.09 0.09 0.16 0.16 1.16 Total test variance

1.17 K / K -1
0.96 Sum of item variances
0.83 Sum of item variances/total test varian
0.17 1- (sum of item variances/total test

variance

Table 4
Ten. Students' scores on a 7-item, speeded test with coefficient alpha calculations

Items
3 ;41,:' Score

1 1 0 0 0 0 0 2

0 1 1 1 1 1 0 5

1 0 0 0 0 0 0 1

1 1 0 1 0 0 0 3

1 1 1 1 1 0 1 6

Merl, 0 1 1 1 1 1 1 6

1 0 1 0 1 0 1 4

1 1 0 1 1 1 1 6

ris 1 1 1 1 1 1 1 7

Brad 1 1 1 1 1 1 1 7

P 0.8 0.8 0.6 0.7 0.7 0.5 0 . 6 4.7 M
tleg a2 0.1 6 0.16 0.24 0.21 0.21 0.25 0.24 4.01 Totai test variance

1.17 K /K - 1
0.74=a 1.47 Sum of item variances

0.37 Sum of item variances/total test varian
0.63 1- (sum of item variances/total test

variance)
Note. Answers that Todd, Lu, Nancy and Tammi had answered correctly in the
nonspeeded test, but answered incorrectly on the speeded test are in bold.
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Minimal test score variance leads to minimal coefficient alFha

Items Score
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Gina

V 0.25

a= - 2 1

0 6 0.6 0.6 0.6 0.6 0.4 3.9 Total test variance
0.24 0.24 0.24 0.24 0.24 0.24 0.09

K/K -1
1.17 Sum of item variances
1.69 Sum of item variances/total test varianc
18.8 1- (sum of item variances/total test vi
-1 8

Table 6
Maximal test score variance leads to maximal cocIficiem. alpha

-13 I

-77.:Skip

Items Score
3 4 5 6

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

o 0 o
0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 7

1 1 1 1 1 1 1 7

1 1 1 1 1 1 1 7

1 1 1 1 1 1 7

1 1 1 1 1 ii 7

P 0.5 0.5 0.5 0.5 0.5 0.5 0.5 3.5 M

0.25 0.25 0.25 0.25 0.25 0.25 0.25 12.3 Total test variance

a= 1 1.17 K/K-1
1.75 Sum of item variances
0.14 Sum of item variances/total test varianc
0.86 1- (sum of item variances/total test vi
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Table 7
Ten persons' scores on a seven item dichotomously scored test

Items Score
3 4' Car:

UtZ 0 0 0 1 2

0 0 0 1 0 0 1 2

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1

Mark 0 0 0 0 0 1 1 2

0 0 0 0 1 1 1 3

0 0 0 1 1 1 1 4

0 0 1 1 1 1 1 5

0 1 1 1 1 1 1 6

1 1 1 1 1 1 1 7

P 0.1 0.2 0.3 0.5 0.5 0.7 0.9 3.2
V 0.09 0.16 0.21 0.25 0.25 0.21 0.09 4.56 Total test variance

0.844 a 1.17 K / K -1
1.26 Sum of item variances
0.28 Sum of item variances/total test variancE
0.72 1- (sum of item variances/total test var

Table 8
Scores from test in Table 7 with two added items that everyone answers incorrectly

Items Score

Buzz 0 0 0 0 0 1 1 0 0

Meg 0 0 0 0 0 0 1 0 0 1

Skip 0 0 0 0 0 0 0 0 0 0

Jan 0 0 0 0 0 0 1 0 0 1

Mar k 0 0 0 0 0 1 1 0 0 2

Joy 0 0 0 0 1 1 1 0 0 3

Max 0 0 0 1 1 1 1 0 0 4

Lucy 0 0 1 1 1 1 1 0 0 5

Alex 0 1 1 1 1 1 1 0 0 6

Gina 1 1 1 1 1 1 1 0 0 7

P 0.1 0.2 0.3 0.4 0.5 0.7 0.9 0 0 3.1 M
0.09 0.16 0.21 0.24 0.25 0.21 0.09 0 0 4.89 Total test variance

0.84 =a 1.13 K/K-1
1.25 Sum of item variances
0.26 Sum of item variances/total t
0.74 1- (sum of item variances/to
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Table 9
Scores from test in Table 7 with two added items that add score variability

Items Score

0

1 1

0.1
0.09

O 0 0 0 0 1 0 0

0 0 0 0 1 1 0 0

O 0 0 1 1 1 0 0

0 0 1 1 1 1 0 0

O 1 1 1 1 1 0 0

1 1 1

11

0.2 0.3
0.16 0.21

0.4

1 1

1 1

0.5 0.7
0.24 0.25 0.21

1 0 0

1 -1 1

0.9 0.1 0.1 3.3
0.09 0.09 0.09 6.81 Total test variance

0.89 =a 1.13 K/K-1
1.43 Sum of item variances
0.21 Sum of item variances/total t
0.79 1- (sum of item variances/to

Table 10
Scores from test in Table 7 with two added items that decrease score variability

Items Score

:::':':' ..: :'..4:':''' .',...:6.:':'''::: i 6-:'-'::'.:.18 f:- ,.. 9.':'::':':'..:'.:::.i'::::':':1:,':.::.::::::':

Attzr. 0 0 0 0 0 1 1 0 0 +

Sitip, 0 0 0 0 0 0 0 1 1 0

4 0 0 0 0 0 0 1 1 1 ic

Mttitk 0 0 0 0 0 1 1 0 0 e

:40.ir 0 0 0 1 1 1 0 0 4

Mar.:,:l' 0 0 0 1 1 1 1 0 0 -

Ltiey. 0 0 1 1 1 1 1 0 0 ..
.. - *.

,Aliter.: 0 1 1 1 1 1 1 0 0 '.
Gint:' '1 1 1 1 1 1 1 0 0

P 0.1 0.2 0.3 0.4 0.5 0.7 0.9 0.2 0.2 3.5 Iyi

0.09 0.16 0.21 0.24 0.25 0.21 0.09 0.16 0.16 3.45 Total test variance

1.13 K/K-1
0 . 61 = a 1.57 Sum of item variances

0.46 Sum of item variances/total t
0.54 1- (sum of item variances/to
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